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ON THE THEORY OF THICK SLABS ON AN ELASTIC FOUNDATION* 

M.A. SUMBATYAN and I.F. KHRDZHIYANTS 

Static problems are investigated covering the deformation of a thick 
elastic slab with an arbitrary smooth boundary that rests without friction 
on a linearly deformable foundation. The slab is loaded by a normal 
distributed load on the upper face. Lur'e's symbolic method is used to 
investigate the state of stress and strain of the slab. A class of 
homogeneous solutions correspponding to a free upper face and the 
condition of linearly elastic contact of the slab with the foundation 
on the lower face of the slab is isolated. This last condition is a 
relation realized by the integral operator of the contact problem for a 
linearly deformable foundation between the settling of the slab and the 
contact stress. It is shown that the homogeneous solution determined in 
this manner can be of three kinds: potential, vertical, and harmonic. 
There is also a certain elementary solution. The problem here of finding 
the characteristic numbers of the potential solution reduces to seeking 
the eigenvalues of the integral operator mentioned. The axisymmetric 
problem of the deformation of a thick circular slab in a Winkler foundation 
is considered as an example. 

The problem under consideration was extensively investigated earlier 
within the framework of the applied theories of slabs: Kirchhoff-Love 
/l--3/,Reissner /4, 5/, and others /5/. 

1. Consider a slab of isotropic elastic material resting without friction on a linearly 
deformable isotropic foundation. We take the slab middle plane as the plane x,,x, of a 
rectangular Cartesian coordinate system and denote the slab thickness by 2h. Let r be the 
cylindrical boundary of the slab. 

Investigation of the slab state of stress and strain reduces to solving the Lame' 
equilibrium equations in the displacement u1 = {u,v, w} /6/. The stresses (Jo, are expressed 
in terms of the displacements by using the generalized Hooke's law /6/. For simplicity, we 
limit ourselves to the case when a normal distributed load is applied to the slab upper face. 
Then the boundary conditions on the endfaces have the form 

2 = h, a,, = 0 (a = 1, 2), ‘/,a,,/G = p (q, 2,) (1.1) 
z = -h, a,, = 0 (cc = 1, 2), UJ = La,, 

Here L is a linear operator expressing the relationship between the settling of the 
foundation surface and the normal load acting on it, where /3, 7 / 

(S is the domain occupied by the slab). The function L(R) possesses certain special 
properties /3, 7/. The kernel K (q, s2) is positive and symmetric in the domain S. 

If it is a Winkler base, then 
Lf = f/c 0.3) 

(c is the bed coefficient), which corresponds to L(R) = const. 
The boundary conditions on the slab lateral surface are specified by the acting load 

given in L. 
We construct the solution of the problem by using Lur'e's symbolic method. The solution 

of the Lam&equation can be obtained in the form /6, 8/ 
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coszDw,,- x - y (&u,,’ + 3.g; - D2w0) 
2(x+4) 

x = l/(1 - 2Y), Da = a7ax,= _t a2/ax,2 

Here v is Poisson's ratio, and G is the slab shear modulus. The stresses can be found 
from(l.4) on the basis of Hooke's law and have a similar form. 

To determine the six unknown functions u,,,vO, wO' and u,,', vO’, wO dependent on x1,x2 we 
use the boundary conditions on the facial surfaces (1.1). We write these conditions in the 
form 

Ga3 (2 = h) + oas (2 = - h) 

26 =coshD( IJ+a,,,)- 

x 
hsinhD ada x+lD lU0’ + aavO’ - DawO) = 0 

-cTa,(z=h)+GaS(Z=-h) 
26 = xh cos hDd, (aluO + a2vo -+ wOf) + 

(1.5) 

a&q(r=h) 
~ = - & [ xh cos hD (ago’ + i&v,, - D2w0) + 26 

* (alu; + a+>;) + (2x + 1) Dsin hUwo] + 

xhD sin hD (a12b + arvo + WI)‘) + (x - 1) cos hD (aluO + azvO) + 
(x+I)coshD~~‘=p(x~,xg) 

GL{-& [y (a&’ -+ arvo’) + (2x + 1) D sin hDwO + 

xh cos hD (&uo’ + &a,, - Dzwa)] + 

xhD sin hD (aa, + aluo + wo’) + 

(x - 1) co5 hD (al&l + azoO) + (x + 1) cos hDlcr, 1): 

W-4 

(1.7) 

To solve system (1.5)-(1-T), we use the method developed in /6, 8/. We set 

~~1 = L,a,p, + a,v,, cO’ = L,a,pI - a,vl, uiO = L,P, (1.8) 
4 = L,a,p, + a,v,, v. = L,a,P, - a,v,, ~0~’ = L,P, 

where P,, P,, VI, VS are new unknown functions, and L,,L,,L,,Lh are certain differential 

operators of infinitely high order. The functions P,,P, determine the potential solution 

and the functions V,,V, the vortex solution. 

2. By virtue of the linearity of the problem, a separate construction of the potential 
and the vortex solutions is possible. We first study the potential solution in detail. It 

is seen that (1.5) are equivalent to the following two equations in the functions P, and P,: 

E( 
cos hD - LhDsinhD 

xt’ ) 
L1 f (2.1) 

( 
cos hD + *hDsinhD)La] PI=0 

[ 
(xhD2coshD+DsinhD)L,+(xhcoshD-_)LP] P,=O 

These equations will be satisfied identically if we set 

Ll=coshD+&hDsinhD 

Lz = - 
( 
cos hD -_ $& hD sin hDj 

Ls=-xcoshD-+, L4 = - xD’ cos hD + $ sin hD) 

(2.2) 



Taking (2.2) into account, we obtain equations in PI and P, after substituting (1.8) 
into the remaining two Eqs.(l.G) and (1.7) 
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hD (2hD - sin 2hD) PI + (x + 1) D (2hD + sin 2hD) Pz = 

- 2h * p (Xi, 52) 

[ 
& LD (2hD - sin 2hD) + co9 /AD] PI - 

[ 
G LD (2hD + sin 2hD) + q sin* I&D] P, = 0 

(2.3) 

The solution of system (2.3) can be represented as the sum of some particular solution 
of this system and a general solution of the homogeneous system corresponding to the case 

p (%,G) = 0. The problem of constructing the particular solution can obviously be reduced 
to the following problem for an infinite layer. 

We consider the equilibrium of an infinite layer of thickness 2h whose middle plane 
coincides with the zlr.z2 plane under the following boundary conditions: 

(2.4) 

(the continuation to zero is optional) 

z = -h, crQa = 0 (a = 1, 2), u3 = La,,, (.2x, 52) E R, 

The last equation denotes the extention of the contact condition in the interior of the 
domain S, i.e., the application of the last relationship in (1.1) for all r1,x2. 

We will obtain the solution of problem (2.4) by first considering a given function ~a 
for z = -h. By applying a two-dimensional Fourier transform in the variables I~,z~ we then 
obtain that for z = --h 

+i- =PK,(ah) -G KS (ah), a = J/al2 + aza (2.5) 

K,(u)=2 
sh;u+2uch2u 8x sP2u - 4u= 

sh4uf4u ’ l&(u)= -u x+1 Sh4U +4lL 

The capital letters here denote the Fourier transforms of the corresponding functions 
that depend on the variables ~,~,a~. We now take into account that the last boundary condition 
for z = --h actually has the form (2.4), therefore 

ua=L(ah)$ ( 0'53 r~,sz)exp[i(a~s~ + azzz)]dxl dxz 

Substituting this relationship into (2.5) and performing an inversion therein, we obtain 
an equation for the function as3 for .z = -h 

~=/-sS48(~l,~2)d~Idua~L(cr)Kl(a)~ (2.6) 
ES -03 

exp I- i [al (x1 - ul) + ce (x2 - uz)ll dxl du (51, x2) E-s 

(f 6% Xa) is the original of the function P(u,,a,)K,(a)). 
Thus, in the general case the problem of finding the particular solution of the 

inhomogeneous problem is successfully reduced to a two-dimensional Fredholm integral equation 
of the second kind. 

We will now consider the construction of the homogeneous potential solution. We call 
the solution corresponding to a free upper endface and a contact condition with the base at 
the lower endface the homogeneous solution of the problem under consideration. Let P h 4 = 
0, then the first equation of (2.3) is satisfied identically if the stress function 0 is 
introduced 

PI = (X i- 1) D (2hD -I- sin 2hD) Q,, P, = -hD (2hD - sin 2hD) CII 

The second equation of (2.3) therefore takes the form 

(2.7) 

[&+ LDa (4h2Da - sina 2hD) +- D2 (if ‘$fiD )] (I, = 0 (2 V’ .J) 

As in the classical theory of slabs /6, 8/, we will seek the solution of (2.8) in the 
class of metaharmonic functions in the domain S 

(Da - y*/h*) 0 = 0 (2.9) 
We then obtain the following relationship from (2.8) 

y*L@ = yapL0, (2.10) 

where 
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pz- 1+ ( F) [$+(4yS-t3ina2y)]-’ (2.11) 

A solution different from zero for (2.10) exists in the class of operators (l.l), (1.2) 
with symmetric positive kernel only provided that p = p,, is an eigenvalue of the operator L, 
while 0, is its corresponding eigenfunction (n = 1,2, . . .) /9/. The complex characteristic 
numbers ynk (Re y,,k > 0), n, k = 1, 2, . . . are foundfrom (2.11) with the values b > 0. However, 
the eigenfunctions Q,oof the operator L are &own not to satisfy Eq.(2.9) in the general case; 
consequently the function CP,should be represented in the form of the expansion 

@,n= f$ ank@)nkr n=l,2,... (2.12) 
k=l 

in the functions a),&, which iS a solution of (2.9) for y = Y,,k. The qeustions of completeness 
that emerge here require further analysis. 

The value y = 0 is known to satisfy (2.10), and as is seen from (2.9), corresponds to 
the harmonic solution. Exactly as in classical theory /6, 81, the biharmonic solution is 
separated from the potential homogeneous solution, and the harmonic solution is separated out 
in a natural manner. The stresses and displacements corresponding to the harmonic solution 
have the form 

tla = a&J (a = 1, 2), us = 0 (2.13) 

(J_qa = uss = 0, +-a&@ (cc,fJ=l,2), DW=O 

The absence here of the quadruple root y = 0 corresponding to the biharmonic solution 
of classical theory is due to the fact that the two zero roots y are, in effect, transformed 
into roots of the characteristic Eq.(2.11). 

We will now consider the construction of the vortex solution. Subsituting the vortex 
part of the relationships (1.8) into (1.5)-(1.7) (for p(zl,ra) = 0), we note that (1.6) and 
(1.7) are satisfied identically here. The remaining relationships (1.5) yield 

a, cos hDV, = 0, &D sin hDV, = 0 (a = 1, 2) (2.14) 

Let the functions V,, and V,, satisfy the metaharmonic equations 

(D2 - Uka/ha) V,k = 0, (D2 - tih2/h”) V,, = 0 (2.15) 

We then obtain from (2.14) 

CQ = nk - n/2, 6k = nk (k = 1, 2, . . .,) (2.16) 

The displacement vector components for the vortex part of the solution have the form 

An elementary homogeneous solution that leaves the foundation undeformed 

u RR l-v = CC= V --~XCZ. 

G 
i+v 

%a=- 7, uss = a,, = u12 = 0, a=1.2 

(2.18) 

still exists in addition to the solutions constructed above for the problem in question. 

3. The expression for the operator L (1.2) is usually known explicitly for a specific 
kind of linearly deformable base. For instance, if the base is an elastic half-space then 

L(R)=&++ 

If the base foundation is an infinite layer resting without friction on a rigid base then 

(2.17) 

If the layer adheres completely to the underlying rigid base, then 

(3.2) 

L(R)==* 
2xlsh2R-4R 

(2x,ch2R+i+xla+4Ra)R ’ x, = 3 - 4Vl 



193 

(G,, ~1 are the elastic constants of the base). Other kinds of linearly deformable bases are 
known /7/. 

For such a base the potential part of the solution is constructed in conformity with the 
theory elucidated in Sects.1, 2. 

A different situation arises if the base is a Winkler foundation (1.3). Then the eigen- 
value p = llc of the operator L (2.10) is unique, and for these values (2.10) is satisfied 
identically for an arbitrary function @. Therefore, in this case the potential homogeneous 
solutions a,, should be found from (2.9) taken for y = yn, where y,, (Rey,>O) are complex 
roots ofthetranscendental characteristic equation 

F(y)= 1+ q$ + A(4ya--sina2y)=O, A=-&&- 

obtained from (2.11) for p = l/c. Therefore, here as in the classical case, the vector of the 
characteristic numbers {yk} is one-dimensional. The relationship (3.4) was obtained in /5/ 
for the two-dimensional problem about the plane state of stress of a thick beam. 

In the case of the Winker foundation the particular solution of the inhomogeneous problem 
can also be constructed much more effectively. The fact is that here the continuation to the 
exterior of the domain S (the last condition in (2.4)) for the relation ug = a,,/~ corresponds 
to the problem of an infinite layer loaded from above by normal forces p(s,,q) and resting 
without friction on the Winkler foundation. The solution of this problem is obtained easily 
by using Fourier transforms and has been studied in some detail /lo/. 

We note that the fundamental difficulty in solving the problems under consideration is 
associated with satisfying the boundary conditions on the slab lateral surface. 

4. As an illustration, we consider the axisymmetric problem of the deformation of a 
circular slab with a free lateral surface on a Winkler foundation. Let the applied load be 
p r)= J0(6r),870. Then the particular solution of the problem (an infinite layer on a Winkler 
foundation) is expressed in elementary form. We have for the Love function 

~(r)=~[A~(6h)(61shGhch6z--6hchGhsh6z-Zvsh6hsh6z)+ 
A, (6h)(&z ch 6hsh 6z - Ghsh6h chdz - 2vch 6h ch6z)l J, (6r) 

(4.1) 

Al (4 = +(sh2r-22t)++ 

A sh'z 2 
An(z) =T(sh2z+2r)+F, A'=- 

It can be shown that two kinds of homogeneous solutions, the harmonic and the vortex one, 
do not occur in the problem under consideration. To construct the homogeneous potential 
solution we investigate the roots of (3.4). The following asymptotic formula for values of 

Yn large in absolute value that lie in thefirst quadrant 

c nn R ln2nn 
yn- 2 --r- 2nn -+&]+i[&2z.-& ]+o(%)* (4.2) 

can be obtained by the usual methods. 
Exact values of y,, were sought by Newton's method, where its asymptotic value (4.2) was 

taken as the initial magnitude of the appropriate root. Since formula (4.2) loses its effect- 
iveness for small A, as is easily seen, the component U(4.4~) was discarded for A <0.15 in 
specific calculations. In such an approach the process of finding the numbers y,, always 
converged (computations were performed in the range 0.01 < A < 100). 

The solution of the metaharmonic Eq.(2.9), bounded at the origin, has the following form 
in the axisymmetric case, as is well-known 

CD, = CJ, (y,,h-‘r) (4.3) 
Further solution of the problem consists in seeking the coefficients C, by satisfying the 

boundary conditions on the slab lateral surface. To do this, the general solution in the form 
of the sum of the inhomogeneous solution (4.1) found above, the elementary solution (2.18), 
and the eigenfunction series of the homogeneous problem (4.3) is written down for the stresses 

0, and r,, (the corresponding formulas are not presented because of their complexity). 
The boundary conditions on T can be satisfied by several methods. In this paper the Lagrange 
variational principle /11/ was used, which helped to reduce the problem to a certain linear 
algebraic infinite system. The following parameter values were taken: v=O.2 (concrete) and 
8=2/a ((I is the slab radius). The solutions of tenth and twentieth order systems are 
practically identical in all the cases considered. Consequently, we limited ourselves to 10 
terms in all the series (this corresponds to five characteristic numbers y,, and five 7,). The 
error in satisfying the boundary conditions, including on the slab edge, did not exceed 3x40-J 
in this approach (the characteristic value of the stress is due to the selection of the applied 
load and equals p(O)= i) The time to calculate any of the stresses or displacements at an 
arbitrary point of the slab is 1 set on average on an ES-1022 computer. 
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u,/h 

Fig.1 Fig.2 

Curves of the slab settling (for the face z= h) are displayed in Figs.1 and 2 for A = 4 
and A = 40 and different X= h/a. Curves 1-4 correspond to i=O.l. O&0.3, 0.4. The curve of the 
external laod in appropriate dimensionless variables is shown for comparison by dashes. It 
is seen that a thin slab almost duplicates the shape of the outer load. As the slab thickness 
increases it is deformed less and less and for h= 0.4 settles amost as a rigid stamp. This 
tendency appears more strongly on a soft base (A = 40) than on a stiff one (A = 4). 

Calculations showed that domains of high negative normal stresses, exceeding the 
characteristic stress severalfold, can appear in thin slabs. This can result in the appearance 
of cracks and raptures in reinforced concrete foundations. The method in this paper enables 
the minimum slab thickness for which negative stresses will not exceed the allowable ones to 
be estimated. 

In conclusion we note that the approach developed in this paper can be carried over to 
dynamic problems on the harmonic vibrations of a thick slab on an elastic foundation. 
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